Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Redox reactions underlie several biogeochemical processes and are typically spatiotemporally heterogeneous in soils and sediments. However, redox heterogeneity has yet to be incorporated into mainstream conceptualizations and modeling of soil biogeochemistry. Anoxic microsites, a defining feature of soil redox heterogeneity, are non-majority oxygen depleted zones in otherwise oxic environments. Neglecting to account for anoxic microsites can generate major uncertainties in quantitative assessments of greenhouse gas emissions, C sequestration, as well as nutrient and contaminant cycling at the ecosystem to global scales. However, only a few studies have observed/characterized anoxic microsites in undisturbed soils, primarily, because soil is opaque and microsites require µm-cm scale resolution over cm-m scales. Consequently, our current understanding of microsite characteristics does not support model parameterization. To resolve this knowledge gap, we demonstrate through this proof-of-concept study that X-ray fluorescence (XRF) 2D mapping can reliably detect, quantify, and provide basic redox characterization of anoxic microsites using solid phase “forensic” evidence. First, we tested and developed a systematic data processing approach to eliminate false positive redox microsites,i.e., artefacts, detected from synchrotron-based multiple-energy XRF 2D mapping of Fe (as a proxy of redox-sensitive elements) in Fe-“rich” sediment cores with artificially injected microsites. Then, spatial distribution of FeIIand FeIIIspecies from full, natural soil core slices (over cm-m lengths/widths) were mapped at 1–100 µm resolution. These investigations revealed direct evidence of anoxic microsites in predominantly oxic soils such as from an oak savanna and toeslope soil of a mountainous watershed, where anaerobicity would typically not be expected. We also revealed preferential spatial distribution of redox microsites inside aggregates from oak savanna soils. We anticipate that this approach will advance our understanding of soil biogeochemistry and help resolve “anomalous” occurrences of reduced products in nominally oxic soils.more » « less
-
Soil physical properties, such as soil texture, color, bulk density, and porosity are important determinants of water flow (e.g., infiltration and drainage), biogeochemical cycling, and plant community composition. In addition, they reflect the environment in which the soil developed, giving insight into climate, mineralogy, and land cover. While many soil assessments require sophisticated laboratory equipment, some can be made simply by a trained individual, requiring only practice and reference materials. For students in environmental fields, it is particularly important and empowering to learn how to make informed soil observations that provide insights from the soil pedon to the landscape and that can be done within the field setting. Drawing on updated pedagogical approaches, including active learning, small group collaboration, and metacognitive exercises, this paper presents a course module for teaching soil texture and color analysis in the field that can be modified for students from secondary through graduate school. The combination of asynchronous, pre-course readings and assessment; synchronous, in-class instruction, hands-on practice, and application activities; and post-class reflection give students the opportunity to build a strong foundation for making soil observations. This course module is suitable for both in-person and remote learning modalities and can be adapted to a number of course topics across environmental disciplines. Ultimately, the goal is to provide students with exciting, hands-on training that inspires them to learn more about soils regardless of the learning platform.more » « less
An official website of the United States government
